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We prove direct and inverse theorems for the classical modulus of smoothness
and approximation by algebraic polynomials in L[ —1.1]. These theorems con-
tain the well-known theorems of A. Timan, V. Dzyadyk, G. Freud, and Yu. Brudnyi
as special cases when p=cc. They also provide a characterization of the spaces
Lip(a, p) (Lipschitz spaces in L,) for O0<a<oc, 1<p< . € 1995 Academic

Press. Inc.

I. INTRODUCTION

In this paper we study a connection between smoothness of functions
in L, —1,1] and their approximability by algebraic polynomials. The
smoothness is expressed in terms of the classical L -modulus of smooth-
ness

otz o | o () ren

O<hs<t ;=0 il - 01 ]

Such a connection in the case p= oo was described as far back as in the
1960s. But for p < oo only partial results have been obtained to date. The
theorems presented in this paper make the situation in the case | < p <o
as complete as in the case p= .

Let us recall the general theorems which express the connection between
w,( f, t), and approximation by polynomials in the case p= oo:
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THEOREM A [1]. Let f be a continuous function given on the interval
[ —1,1]. For every r=1,2, ... there exists a sequence of algebraic polyno-
mials P, of degree at most n, n2r — 1, such that

[f(x) =P (x)| <caolf pux)) ., (1.1)

where p(x)=n""1—x*)"2+n"2 and c is a constant depending only on r.

THEOREM B [9]. Let f be a function defined on [ —1,1]. If, for some
sequence of algebraic polynomials P, of degree at most n,n=1,2, ...,

|f(x) = P(x)] Sw(p,x)), (1.2)

and w(t) is a nondecreasing function satisfying the condition w(t, +t;)<
M[w(t)) + wl(t;)], then for every r=1,2, .,

1 1
w,f, thct"J Z)"(f‘)du <0<r<§>, (1.3)

where the constant ¢ depends only on r and M.

An essential feature of these theorems is that the rate of approximation
1s faster at the end points than at interior points of the interval. Thus (in
contrast to corresponding theorems for trigonometric polynomials [ 7]) the
results do not have simple formulations in terms of supremum norms.

Theorems A and B complement each other in the following sense:
Denote by Lipla, p)={feLl,[-1, 11w/ 1),=0")}, 0<a<r, the
Lipschitz spaces in L,[ — 1, 1]. The following characterization of Lip(a, o)
in terms of approximation is an immediate corollary of Theorems A and B.

TueoreM C. A function f, defined on [ —1, 1], belongs to Lip(a, oc) if
and only if there exist polynomials P, of degree at most n, n=1, 2, ..., such
that

|f(x) = P x)) <cp(x). (1.4)

The problem of extending Theorems A, B, and C to the case p < oo has
been open for a long time. We offer the following theorems as a solution
to this problem.

2. STATEMENT OF THE RESULTS

Throughout the rest of the paper w will denote a nondecreasing function
w:R* - R* satisfying the condition w(¢, +1,) < M[w(t,)+w(t,)] for
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some constant M. From this point on p, will denote the function p,(x) =
2751 —=x?)"?+27% In the theorems stated below the /, norm is taken
over the discrete parameter k=0, 1, 2, ...; the L, norm is taken over a con-
tinuous parameter x € [ —1, 1], though dependence on x of the functions £,
P, and P, is not explicitly indicated. We use the customary notation for

the mixed norm || A4,(- )Hl,pr = {14 ,(ﬂ},\.l\,p.

THEOREM 1. Let feL,[—1,1]. For every r=1,2,.. there exists a

sequence of algebraic polynomials P, of degree at most 2*+r—2,
k=0,1,2, .. such that

— P, ; 2—1\ i
‘f k < .]]w,(f - )p , (2.1)
olpi) bl Lp) w(277) A
where the constant ¢ depends on r and M, but on nothing else.
Theorem A follows from Theorem | by setting w( w,(f, 1), and

p=oC.

Remark. The inequality (2.1) with the weight function w(t) =1t is due
to E. Dyn’kin [5]. However, when restricted to this case, the inequality
(2.1) does not contain (1.1) and furthermore the functions w(¢) =t cannot
be used to characterize Lip(a, p) when p< oo (cf. [5]).

THEOREM 2. Let [ be a function defined on [ —1,1]). If for some
sequence of algebraic polynomials P, of degree not exceeding 2% — 1

‘f Py

2.2
w(pi) (22)

I Lp)

then, for every r=1,2, ..,

1 q lig
w,(f,t)psa'“ <wff,’)> dl—i'] , ﬁ+%}=l, (23)

where the constant ¢ depends only on r and M, but on nothing else.

Setting p = o, we obtain Theorem B as a special case of Theorem 2.
Theorems 1 and 2 provide the following characterization of the Lipschitz
spaces Lip(«, p):

THEOREM 3. A function [, defined on [ —1, 1], belongs to Lip(a, p) if
and only if there exist polynomials P, of degree at most 2%, k=0, 1,2, ...,
such that

i = Pomin{L, t/p} ., =00"),  0<a<s. (2.4)
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Remarks. (1) The idea of using min{1, t/p,} for a characterization of
Lip(«, p) appears in [4], where it is proved that for every function f from
the Lipschitz class Lip(a, p), 0 <a < 1, there exist polynomials P, such that
I(f =P ymin{ 1, t/pi (0, = O£7).

(i1) Tt has been shown by V. Motornyi [8] and R. DeVore [4] that
the direct L, -analog of (1.4), namely the condition {(f—P,) p | 1, <6
does not characterize Lip{«, p) when p < oo. The proofs in Section 3 show
that the mixed norm /,(L,) appears naturally and seems to be inevitable.

3. PrROOFS

Notation. For a set J<[—1,1] we use the following notations: the
Lebesgue measure of J is denoted by |J|, x, is the characteristic function
of the set J, and L,(J) denotes the L, norm taken over J.

We will write 4 < B if there is a constant ¢ > | such that 4 <¢- B, and
use the notation and A ~ Bif ¢ 'A< B<c-A;in both cases the constant
¢ may depend on r and M, but on nothing else. We also remark that the
usual change for sup should be made in formulas when p=oc or g= 0.

Proof of Theorem 1. We will derive the inequality (2.1) from the
following two properties of algebraic polynomials:

(i) Approximation of characteristic functions of intervals [2]. For
every n=1,2,..., m=1,2, .., and ye[ —1, 1] there exists a polynomial p
of degree at most # — | such that

v (x) = p(x) < ell +n |arc cos x —arc cos p|) ™™ (3.1)

Here xe[ —1, 1] and the constant ¢ depends only on m.

(i1) A growth condition for polynomials. For every polynomial ¢ of
degree not exceeding n and every interval I=[a, b],

49l 2pury ¢l (3.2)

I1|n+ 1/p>

lg(x)) < ¢, dist(x, [)"

where dist(x, )= |x — (a + b)/2].

The inequality (3.2) follows immediately from [9, Formulae 2.9.11(9),
2.9.1(5), and Section 4.9.6].

We shall apply properties (i) and (ii) on certain subintervals of [ -1, 1].
We use the partitions

xe =cos(n—2"""Ta(j—1)), j=1,.,2""+1, k=01, ..,
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which are consistent with (1). For each k =0, 1, 2, ... we denote the intervals
1/‘,‘]-—: [Xk_]-, xl\:j+l)’j= 1, ey 2k+1 — 1, Ikvzlu-l = ['\‘k,Zk“" 1],

and numbers w,_;=aw(|, |}, j=1, ., 26+1 Foreach /=0,1,2, .. let =
{(k, jr27 "<l ;1 <2 7).

LemMa. For every k=0,1,2,... every i j=1.,25""" and every
I=0,1,2,
(1) e <L+ 1=y 1l (3.3)
(1) |~ pp(x) Sforall xel,, (3.4)
(1id) Zx,k',gc, (3.5)
By

where ¢ is an absolute constant.
Proof. This is a straightforward direct calculation.

We will also use the intervals I, =1, 0l ,,,, k=0,1,2, ., j=
1,..,25""—1, and the notation @, ;=w(|l, ). For each /=0,1,2, .. let
B ={(k,j):27'""<|I, ;| <27'}. The lemma also clearly holds for /, ; and
A,

Let p, , be polynomials of degree at most 2k 1 for k=0,1,2,.. and
Jj=1,.,2*"" Suppose that they satisfy (3.1) with y=x,, and m=
2r+ [a] + 1, where a =log,(2M). 1t follows from the lemma that for every
k=0,1,2,..,every i,j=1,.,25" and every xe [, ,

e () = pe e <UL+ li= 7D, (3.6)

where Kk j = Kixe 17
It also follows from (3.2) and the lemma that

lgQOl < (L4 1= D> L 70 e s (3.7)

for any polynomial g of degree not exceeding »r — 1 and every xe/, .

The monotonicity properties of @ imply that w(ct) <2Mc*w(t), for ¢ > 1
and x=log,(2M). Therefore, by the lemma, for every k=0, 1, 2, .., every
ij=1,..,2%"" and every xel,

@(pix N (L + [i—j1 e, ). (38)

The estimates (3.6), (3.7}, and (3.8) imply that for any polynomial ¢ of
degree not exceeding r— 1, for every k=0,1,2, .., every i,j=1,.,28"",
and every xel, ;
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(XY (x) = pr (X))
api(x))

91l Lz

<L+ fi—jh 2 e (3.9)

k.j

It follows from (3.9) that for arbitrary polynomials ¢, of degree at most

r—1, j=1,., 25,
2k +1 261 ‘ “ P lp
K j— Py J‘ I: <’ q; I'P”kl’) jl
qg;———— < —_—— . (3.10)
I 1;1 ! pk) HI jgl Wy ;

Let L, ; be arbitrary polynomials of degree at most r—1 for each
k=0,1,.. and j=1,.,2**"'—1. Define g, ,=L, ,—L,, , when j=
2,.,2"*"—1 and ¢, ;=0 when j=1 or 2**! By (3.3)

g 9. ’”’r"k/) Lip 2K+l Hf‘_Lk.jHLl"ik,/) Pyl
[Z< Wy j >} <[ Z < Wy >} - B

Jj=1 - /=1

Define S, =L, + sz” - Gr Xk, and Py =1L, szH 9. ;i Pr ;-
Clearly S, is a piecewise-polynomial function and P, is a polynomial of
degree not exceeding 2% +r —2. By (3.10),

Sk — P}\' 2"*1‘, 1 qu.J“ LAtk ) raRy:
v <X o)
/)k iy =1 (Uk,j

Therefore,
” olp HLp i=1 Dy, '
Since
o 2k ”f LA/HLtlk ) 1ip
§ 75 (U by
[k=0 J=1 Wy j
<l: i Z <‘|f_Lk,J|| Lp(ik,;)>p:' /g
=0 & w(27) ’
we obtain
['fh_“”k <{ 5 Z(Mﬂ)”]”” G12)
P e LiZ0 5 (27 ' :
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To complete the proof we have to specialize to the case where the
polynomials L, ; of degree at most r — 1 are chosen so that they satisfy the
condition

tip

S =Ll |  <@df27,. (3.13)
By

We obtain such polynomials in the following way: For each /=0, 1,2, ..
there is a function f; satisfying the condition (see [3])

Lf = fill o, 27 10, <o,(f270,. (3.14)

2k+1

For every k=0,1,2,.. and j=1,. —1 we define polynomials L, ;
by the formula Z, r—Z”’c(r xi )% where ¢, =f!"(x, )/(s!) and
I=[logy(1/|], ;1)]. Using part (ii1) of the lemma applled to the intervals
IA , and the sets of indices 4,, and also the estimate (3.14) and Taylor’s
formula, we obtain (3.13).

It follows from (3.12) and (3.13) that

Uf Py
w(p;)

lof,275), ]

< , 3.15
Il L) H w(275) ( )

In

which completes the proof of Theorem 1. |}

Proof of Theorem 2. In view of the monotonicity properties of w and
w,(f, 1), it suffices to give a proof for 1=2"" where m=2,4, ... Let m be
an arbitrary positive even integer fixed throughout the proof.

We let I={—1,1—-r2""]). For every n=0,1,..,m/2 we define the
intervals /, by setting

I,={xel:27'<2"(1-x")"*< 1} if n=0,1,.,m2—1

and
I,={xel:2"?(1 -x%)'? <1} if n=m/2.

We also define the sets /F ={xel,: £x>0}. For a set J it will be con-
venient to use the notation J={x+t:xeJ, 0<r<r-2""}, for example,
I,, I, etc. We observe that 3.7 x; < C where C is a constant depending

only on r. The sets I, are “consistent” with p,(x) in the sense that for every
n=0,.,m/2 and xel,

Pon_ulX)~277, (3.16)

where the constant depends only on r.
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LEMMA. Let 1 <g<oc. For every n=0, 1, .., m/2 and each xel,,

m—n . g tig m —k g1 /g
[ 2 (%% } <{ 2 <%2—k~)> ] : (3.17)
k=0 K\ m0

Proof. Let &,,=2%+2"2% " for each k=0,1,2,.. and n=
0,1, .., m/2. The monotonicity properties of w and the equivalent relation
(3.16) imply that for every xel,

m—n (U(/)k(x)) g1 lig m 60(5»‘,,) g7 l/q
| (AR P 3 (Y]
k=0 pk('\) c=n k.on
When k < 2n, the inequalities J,,, <2 ** "'*! and 2n < m yield

2n (U((S._,,) g1 lig [ m w(sz) 47 lig
HC DI HCN

k=n k.n Lhk=0

When 2n <k <m, the inequality J, , <2 %! yields

" w(()‘”') q1 lig r n (1)(’21/‘») g1 liq
LG L 2 )]
()k.n A 2

k=2n+1 Lhk=2n+1

These estimates imply (3.17). |}

For JcoI and 0<h<2™" we will use the estimate [[47}g]| L S
¢, gl LD if geL,[ —1, 1], and the estimate |4}, g| L <2 g™l L)) if
g"elL,[—1,1].

Let us now suppose that {P,};  , is any sequence of polynomials
satisfying the hypotheses of Theorem 2. For every he[0,2 "]

mi2 Lip
HA;lle,,,(I)S[ Z Hf_Pm~n”£ﬂ(f,,):l
n=0

7

mj2 Lip
+z~—mr[ Py J - (318)
n=0

It follows from (3.16) that
“f— Pm ——n” Lol ”(f_ P,,,,,,) w(pm ~-n) 7IH Lol * w(zﬁm)- (319)

Let p~ '+ 4~ ' = 1. It follows from (3.19) that
mi2 Lip
l: Z ”A/‘_Pmn”{,,(l,,):'
n=0
o ni w(z—k) g1 l/g
S PAC =S

k=0

=P
@(py)

: (3.20)

I(Lp)
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We shall now use telescoping sums to estimate the second term of the
sum in the inequality (3.18). Let Q,=P,— P, _, when k=1, ..,m, and
@, =0. Holder’s inequality and the lemma 1mply that for every x e [ -1,11]

S‘ikgo < U)(Pk(’()) kgo 3 —kr .
Consequently,

ni2 (r) m U)( 2 —k g7 lig
[ Z “PL:LHHL,“‘,,} QA p" [ Z <7T;2> :l . (3.2
IP(L,,) k

n= « =0

nm—n

2 00

The following inequality of the Markov-Bernstein type (see [6]) holds
for any polynomial Q, of degree not exceeding 2*:

H QY'PA < H O

il H (py)

| (3.22)

Using the inequalities (3.21), (3.22), and the fact that w(p,) ~ w(pi _ ),
we obtain the estimate

mi2 P ”m 2 —k g lig
[ Y Py ,,ll”pu,,»] (f AH [ 2 <%> ] . (323)
n=0

| @ pA Hl,(l ) k=0

The estimates (3.18), (3.20), and (3.23) imply that

" r[/‘ Pk ” 7777"”‘1: m (w(zk)>q}lq 4
OS2, < P i~ EO 2% S

The inequality (2.3) immediately follows from (3.24), (2.2), and the
monotonicity properties of w. |

Proof of Theorem 3. Necessity follows from Theorem 1 by choosing
o(uj=max{1, u/t}*. Sufficiency follows from Theorem 2 by choosing
()= max{l, u/t}*and r>s. |
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