
JOURNAL OF APPROXIMATION THEORY 81, 13-22 (1995)

A Characterization of Smoothness in Terms of
Approximation by Algebraic Polynomials in Lp

VLADIMIR A. OPERSTEIN*

Departmellt of Mathematics alld Statistics, Simoll Fraser Ulliversity.
Burnahy, British Columhia, V5A IS6. COllado

Communicated hy Vi/mas Totik

Received April 27, 1993; accepted in revised form February II. 1994

We prove direct and inverse theorems for the classical modulus of smoothness
and approximation by algebraic polynomials in LI'[ - 1. I]. These theorems con
tain the well-known theorems of A. Timan, V. Dzyadyk. G. Freud, and Yu. Brudnyi
as special cases when p = 'k. They also provide a characterization of the spaces
Lip(ex., p) (Lipschitz spaces in LI') for 0 < ex. < ():~, I,,; P ";:1:. (199; Academic

Press, Inc.

I. INTRODUCTION

In this paper we study a connection between smoothness of functions
in LA -1,1] and their approximability by algebraic polynomials. The
smoothness is expressed in terms of the classical LI'-modulus of smooth
ness

W,(/, t)I':= sup II ±I -I)'
o ~h ~ I II i =0

i (~) I( .+ ill) II LI'[ _ I. I ,iI J

Such a connection in the case p = oc was described as far back as in the
1960s. But for p < 00 only partial results have been obtained to date. The
theorems presented in this paper make the situation in the case I ::::; p < oc
as complete as in the case p = ex,.

Let us recall the general theorems which express the connection between
w,ll, t)p and approximation by polynomials in the case p = ex:,;
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THEOREM A [ I ]. Let f be a continuous function given 011 the interval
[ - I, I J. For every r = I, 2, ... there exists a sequence of algebraic polyno
mials P" of degree at most n, n ~ r - I, such that

(1.1 )

where p,,(x)=n- I(I-x2
)1/2+ n -2 and c is a constant depending only on r.

THEOREM B [9]. Let f be a jimction defined on [ - 1, 1J. If, for some
sequence of algebraic polynomials P" of degree at most n, n = I, 2, ...,

If(x) - P,,(x)/ ~ w(p,,(x)), (1.2)

and w( t) is a nondecreasing jimction satisfving the condition w( t I + t2) ~

M[ w(t I) + w( t2) J, then for every r = I, 2, ... ,

I
I w(u)

wr(f, t)". ~ ct
r

I ur+ I du (1.3 )

where the constant c depends only on rand M.

An essential feature of these theorems is that the rate of approximation
is faster at the end points than at interior points of the interval. Thus (in
contrast to corresponding theorems for trigonometric polynomials [7]) the
results do not have simple formulations in terms of supremum norms.

Theorems A and B complement each other in the following sense:
Denote by Lip(lX,p)={fELA-l,l):w r(f,t)I'=O(t"')}, O<OI:<r, the
Lipschitz spaces in LI' [ - I, I]. The following characterization of Lip(lX, oc)
in terms of approximation is an immediate corollary of Theorems A and B.

THEOREM C. A jimction j; defined on [ - 1, 1J, belongs to Lip( IX, et:;) if
and only if there exist polynomials P" ol degree at most n, n = I, 2, ..., such
that

If(x) - P,,(x)\ ~ cp,,(x)"'. ( 1.4)

The problem of extending Theorems A, B, and C to the case p < oc has
been open for a long time. We offer the following theorems as a solution
to this problem.

2. STATEMENT OF THE RESULTS

Throughout the rest of the paper w will denote a nondecreasing function
w : IR + -+ IR + satisfying the condition w( t I + t2) ~ M[ w( t I) + w( t2) ] for
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(2.1 )

some constant M. From this point on Pk will denote the function Pk(X) =
2-k(1_X2)1/2+2-2k. In the theorems stated below the II' norm is taken
over the discrete parameter k = 0, 1, 2, ... ; the LI' norm is taken over a con
tinuous parameter x E [ -1, 1], though dependence on x of the functions f,
Pk, and Pk is not explicitly indicated. We use the customary notation for
the mixed norm IIA k(· )11 1 (L ):= II {IIAk(·)t }kill'

P P ."'1' P

THEOREM 1. Let f E Lp [ - 1, 1]. For every r = I, 2, '" there exists a
sequence of algebraic polynomials Pk of degree at nwst 2k + r - 2,
k = 0, 1, 2, ... , such that

v-Pkjj Ilw,U,2-kV
I'1

.. w( Pd IpU_p) ~ C . w( 2 - k ) I
p

'

where the constant c depends on rand M, but on nothing else.

Theorem A follows from Theorem I by setting w(t) = w,U, t)1' and
p = C/0.

Remark. The inequality (2.1) with the weight function w( t) = tex is due
to E. Dyn'kin [5]. However, when restricted to this case, the inequality
(2.1) does not contain (1.1 ) and furthermore the functions w( t) = t ex cannot
be used to characterize Lip( ex, p) when p <x (cf. [5]).

THEOREM 2. Let f be a function defined on [- 1, I]. If for some
sequence of algebraic polynomials Pk of degree not exceeding 2k

- 1

'I'l
f - P

k
II ~ I, (2.2)

w( Pd Ipl Lp }

then, for euery r = 1, 2, ... ,

ff
l (W(U))qdull/q

w,U, t)p ~ ctr
-- - ,

t u r
II

1 1- + - = 1,
p q

(2.3 )

where the constant c depends only on rand M, but on nothing else.

Setting p = c£, we obtain Theorem B as a special case of Theorem 2.
Theorems 1 and 2 provide the following characterization of the Lipschitz

spaces Lip(ex, p):

THEORET.., 3. A function f, defined on [-1, 1], belongs to Lip(ex, p) if
and only if there exist polynomials P k of degree at most 2k

, k = 0, 1, 2, ... ,
such that

0< ex < s. (2.4 )
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Remarks. (i) The idea of using min{ I, tip,,} for a characterization of
Lip( IX, p) appears in [4], where it is proved that for every function .r from
the Lipschitz class Lip( IX, p), 0 < IX < I, there exist polynomials Pk such that

IIU - P k ) min{ I, t/pd "',lLrl = 0(1").

(ii) It has been shown by V. Motornyi [8] and R. DeVore [4] that
the direct L,,-analog of (1.4), namely the condition IIU- P,,) p /-;"1\ If ~ c,
does not characterize Lip( IX, p) when p < 00. The proofs in Section 3 show
that the mixed norm II'(L,,) appears naturally and seems to be inevitable.

3. PROOFS

Notation. For a set J <;: [ - I, I] we use the following notations: the
Lebesgue measure of J is denoted by IJI, XJ is the characteristic function
of the set J, and L,,(J) denotes the L" norm taken over 1.

We will write A ~ B if there is a constant c ~ I such that A ~ c . B, and
use the notation and A ~ B if c - I . A ~ B ~ c . A; in both cases the constant
c may depend on rand M, but on nothing else. We also remark that the
usual change for sup should be made in formulas when p = ex or q = ex,.

Proof l~l Theorem 1. We will derive the inequality (2.1) from the
following two properties of algebraic polynomials:

(i) Approximation of characteristic functions of intervals [2]. For
every n = I, 2, ..., m = I, 2, ... , and y E [ - I, I] there exists a polynomial p
of degree at most 11 - I such that

IXll.. IJ(X) ~ p(x)1 ~ c(1 + n larc cos x - arc cos yl) -It!. (3.1)

Here x E [ - I, I] and the constant c depends only on m.

(ii) A growth condition for polynomials. For every polynomial q of
degree not exceeding n and every interval 1= [a, b],

I ( )1 ,< d' t( I)" IlqlILI'(/1
q X '" ell IS x, 1/1"+ liP' x rf I, (3.2)

where dist(x, l) = Ix - (a + b)/21·
The inequality (3.2) follows immediately from [9, Formulae 2.9.11(9),

2.9.1 (5), and Section 4.9.6].
We shall apply properties (i) and (ii) on certain subintervals of [ -I, 1].

We use the partitions

xk.j=cos(n-2-k-In(j-I)), j=I, ... ,2k + I +I, k = 0, I, ...,
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which are consistent with (i). For each k = 0, 1,2, ... we denote the intervals

and numbers wk./=w(IIk./I), j= I, ..., 2k+ l
• For each 1=0, 1,2, ... let ;~,=

{(k, j): 2 -'-I < Ilk) ~ 2 I}.

LEMMA. For every k = 0, 1, 2, ... , every i, j = I, ... , 2k + I, and every
1=0, 1,2, ...

(i) Ilul~(I+li-jl)llk)'

(ii) Ilul --.. pdx) for all x Elk.;,

(iii) "'~Xlk,/ ~ c,
14/

where c is an absolute constant.

(3.3 )

(3.4 )

(3.5)

Proof This is a straightforward direct calculation.

We will also use the intervals Ik.)=lk.)ulk.)+J' k=O, 1,2, ... , j=
I, ..., 2k+' -l, and the notation (Vk./=w(llk./I). For each 1=0,1,2, ... let
;!J,= {(k,j): 2- 1- 1 < Ilk.)1 ~2-1}. The lemma also clearly holds for lk./ and
.!J,.

Let Pk./ be polynomials of degree at most 2k
- 1 for k = 0, 1,2, ... and

j= 1, ... ,2k +
l

. Suppose that they satisfy (3.1) with y=Xk./ and m=
21' + [iX] + 1, where iX = log2( 2M). It follows from the lemma that for every
k=O, 1,2, ... , every i,j= I, ..., 2k + l

, and every xElu

(3.6)

where Xk./=Xlxk/.IJ'

It also follows from (3.2) and the lemma that

for any polynomial q of degree not exceeding r - I and every x E lu.
The monotonicity properties of w imply that w( ct) ~ 2Mc~w( t), for c> 1

and Cl =log2( 2M). Therefore, by the lemma, for every k =0, I, 2, ..., every
i, j = 1, ... , 2k + I, and every x E h.;

(3.8)

The estimates (3.6), (3.7), and (3.8) imply that for any polynomial q of
degree not exceeding I' - 1, for every k = 0, 1, 2, ... , every i, j = I, ... , 2k + I,

and every x E lu
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I
q(X)(Xk,j(X) - Pk,j(X)) I

W(Pk(X))

~ (1 + Ii - jW 2 Ilk./l-l,P .Irqll Lplh,})

W k. j

(3.9)

It follows from (3.9) that for arbitrary polynomials qj of degree at most
r-I, j= I, ... , 2k + l

,

(3.10)

Let Lk,j be arbitrary polynomials of degree at most r - I for each
k=O,I, ... and J=I, ...,2k

+
I _1. Define qk.j=Lk.j-Lk.;-1 when j=

2, ..., 2k + I _1 and qk,j=O when j= lor 2k + l
. By (3.3)

(3.11 )

Ii - 2' + 1 - I , • d _ '" 2' , 1 - IDe me Sk - L u + Lj~2 qk,jXk,j an Pk - Lk,l + £"'j~2 qk,jPk.j·
Clearly Sk is a piecewise-polynomial function and Pk is a polynomial of
degree not exceeding 2k +r - 2. By (3.10),

Therefore,

Since

r
ex- (II/-L ,II - )PJ lip~ I L: k,; /P(lk,J) ,

I~O ,iii, w(2)

we obtain
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To complete the proof we have to specialize to the case where the
polynomials Lk,j of degree at most r - I are chosen so that they satisfy the
condition

(3.13 )

We obtain such polynomials in the following way: For each 1=0, 1,2, ...
there is a function It satisfying the condition (see [3])

(3.14 )

For every k = 0, 1,2, ... and j = I, ,.. , 2k + I - I we define polynomials Lk,j
by the formula Lk.j="L.::bcs(X-Xk.Y, where cs=f;,'I(xk,j)/(s!) and
1= [log 2( I/IIk ))]. Using part (iii) of the lemma applied to the intervals
I k • j and the sets of indices JJj , and also the estimate (3.14) and Taylor's
formula, we obtain (3.13),

It follows from (3.12) and (3.13) that

(3.15)

which completes the proof of Theorem I, I
Proof of Theorem 2. In view of the monotonicity properties of wand

wr(f, t)1' it suffices to give a proof for 1= 2 -m where 111 = 2,4, .... Let 111 be
an arbitrary positive even integer fixed throughout the proof,

We let 1= [ -I, I - r2 -mJ. For every n = 0, I, ... , ml2 we define the
intervals In by setting

if n = 0, I, ..., ml2 - I

and

if 1l = m12.

We also define the sets I,~ = {x E In: ±x ~ O}. For a set J it will be con
venient to use the notation J = {x + t: x E J, 0:<:; t :<:; r . 2 -m}, for example,
In, l,f, etc. We observe that "L.;;':oXin:<:; C where C is a constant depending
only on r. The sets I" are "consistent" with Pk(X) in the sense that for every
n = 0, ... , ml2 and x E In

(3.16 )

where the constant depends only on r.
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LEMMA. Let I ,,:::q,,:::x. For every n=O, I, ... ,mI2 and each xEI",

r"I" (W(Pk(.x,»)q1'iq ~ r f (W(2 :rk»)qlJiq. (3.17)
l k~O PkC>;') J lk=O 2 J

Proof Let (5k." = 2 -k + 2 ~2(k ,,) for each k = 0, 1,2,... and n =
0, I, ..., m12. The monotonicity properties of wand the equivalent relation
(3.16) imply that for every x E 1"

When k ,,::: 2n, the inequalities (5k.n ,,::: 2 ~2(k "j + I and 2n,,::: m yield

r 2n (W(5k.,,»)q 1I iq "r m (W(2~k))qlJiq.
l L (5r J ~ l L 2 kr J

k=11 k.l1 k=O

When 2n < k,,::: m, the inequality (5k.n"::: 2- k+ I yields

l m (W(5k.n»)qj liq "l m (W(2-
k
»)qJ Jiq.L 6r ~ I 2-kr

k=2n+l k.1t k=2n+l

These estimates imply (3.17). I
For jel and O,,:::h,,:::2-m we will use the estimate IILl~,gIILpIJ)":::

Cr II gil L{'IJ) if g E LA - I, I], and the estimate IILl~, gil LplJI ,,::: 2 -mr II glr)11 LpIJ) if
gl r) E [1'[ - I, I].

Let us now suppose that {Pk} ;~ 0 is any sequence of polynomials
satisfying the hypotheses of Theorem 2. For every hE [0, 2 - m]

r
mi2 Jlip

IILl~JIII.pl/)"::: "~O 11/- Pm-"llfp(I,,)

+ 2 .mr l "~2 IIPlr) II" - jIi". (3.18)
~ nl-fJ Lpl!,,)

'1=0

It follows from (3.16) that

Let p-I + q-l = 1. It follows from (3.19) that
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We shall now use telescoping sums to estimate the second term of the
sum in the inequality (3.18). Let Qk=Pk-Pk - 1 when k=I, ...,m, and
Qo = O. Holder's inequality and the lemma imply that for every x E [ - I, I]

Consequently,

(3.21 )

The following inequality of the Markov-Bernstein type (see [6]) holds
for any polynomial Qk of degree not exceeding 2k:

(3.22)

Using the inequalities (3.21), (3.22), and the fact that w(pd~W(Pk_tl,
we obtain the estimate

The estimates (3.18), (3.20), and (3.23) imply that

II
{ - P II l ", (W(2 -k))q] Jiq

W,.(/, 2 --"')" ~ .. .__._k .. ·2---"''' L 2 -kr .

I w(p k lll'l'llol'l k~O

(3.23 )

(3.24)

The inequality (2.3) immediately follows from (3.24), (2.2), and the
monotonicity properties of w. I

Proof of Theorem 3. Necessity follows from Theorem I by choosing
w( u) = max {I, ult} ". Sufficiency follows from Theorem 2 by choosing
w(u) = t' max{ I, ult} , and r> s. I
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